QuickstartΒΆ

>>> from commonnn import cluster

>>> # 2D data points (list of lists, 12 points in 2 dimensions)
>>> data_points = [   # point index
...     [0, 0],       # 0
...     [1, 1],       # 1
...     [1, 0],       # 2
...     [0, -1],      # 3
...     [0.5, -0.5],  # 4
...     [2,  1.5],    # 5
...     [2.5, -0.5],  # 6
...     [4, 2],       # 7
...     [4.5, 2.5],   # 8
...     [5, -1],      # 9
...     [5.5, -0.5],  # 10
...     [5.5, -1.5],  # 11
...     ]

>>> clustering = cluster.Clustering(data_points)
>>> clustering.fit(radius_cutoff=1.5, similarity_cutoff=1, v=False)
>>> clustering.labels
array([1, 1, 1, 1, 1, 0, 0, 0, 0, 2, 2, 2])
../_images/quickstart_example.png